V.1 Paracompactness

Definition 1 Let X be a topological space and \mathcal{U} be a collection of subsets of X. \mathcal{U} is **locally finite** if for every $x \in X$ there exists a neighborhood V_x such that $\{U \in \mathcal{U} \mid U \cap V_x \neq \emptyset\}$ is a finite set.

Proposition 1 If $\mathcal{U} = \{U_\alpha \mid \alpha \in J\}$ is a locally finite collection of open sets, $\{\overline{U}_\alpha \mid \alpha \in J\}$ is also locally finite.

Proof Proof follows from that $U_\alpha \cap V_x = \emptyset \iff \overline{U}_\alpha \cap V_x = \emptyset$. \hfill \Box

Proposition 2 If $\{F_\alpha \mid \alpha \in J\}$ is a locally finite collection of closed sets in X, $\bigcup_{\alpha \in J} F_\alpha$ is closed in X.

Proof We prove that $(\bigcup_{\alpha \in J} F_\alpha)^c$ is open. Suppose $x \notin \bigcup_{\alpha \in J} F_\alpha$ and let V_x be an open neighborhood of x such that $C = \{F_\alpha \mid F_\alpha \cap V_x \neq \emptyset\}$ is a finite collection. Then $F = \bigcup \{F_\alpha \mid F_\alpha \in C\}$ is closed. Thus $W_x = V_x - F$ is an open neighborhood of x and W_x is contained in $(\bigcup_{\alpha \in J} F_\alpha)^c$. Hence $(\bigcup_{\alpha \in J} F_\alpha)^c$ is open. \hfill \Box

Proposition 3 If $\mathcal{U} = \{U_\alpha \mid \alpha \in J\}$ is locally finite, $(\bigcup_{\alpha \in J} U_\alpha)^c$ is open. Suppose $x \notin \bigcup_{\alpha \in J} U_\alpha$ and let V_x be an open neighborhood of x such that $C = \{U_\alpha \mid U_\alpha \cap V_x \neq \emptyset\}$ is a finite collection. Then $F = \bigcup \{U_\alpha \mid U_\alpha \in C\}$ is closed. Thus $W_x = V_x - F$ is an open neighborhood of x and W_x is contained in $(\bigcup_{\alpha \in J} U_\alpha)^c$. Hence $(\bigcup_{\alpha \in J} U_\alpha)^c$ is open.

Definition 2 Let \mathcal{U} and \mathcal{V} be collections of subsets of X. \mathcal{V} is a refinement of \mathcal{U} if for all $V \in \mathcal{V}$ there exists $U \in \mathcal{U}$ such that $V \subset U$.

Remark When we consider an indexed collection of sets we allow the identical set to be indexed repeatedly. Actually an indexed collection is a family of pairs (U, α).

Definition 3 X is **paracompact** if every open covering of X has a locally finite open refinement that covers X.

Example 1. compact \Rightarrow paracompact.

2. \mathbb{R}^n is paracompact:

Let $X = \mathbb{R}^n$ and \mathcal{A} be an open covering of X. Let $B_0 = \emptyset$ and B_m be an open ball of radius m centered at the origin for each $m = 1, 2, \ldots$. For B_m choose $A_1, \ldots, A_{k_m} \in \mathcal{A}$.
which covers B_m. Let

$$A'_i = A_i \cap (X - B_{m-2})$$

and

$$\mathcal{C}_m = \{A'_1, \ldots, A'_{k_m}\}.$$

Now $\mathcal{C} = \bigcup \mathcal{C}_m$ is a refinement of \mathcal{A} and a locally finite open covering of X.

Proposition 4 Suppose that X is a paracompact space. For all open covering $U = \{U_\alpha \mid \alpha \in J\}$ of X, there exists a locally finite precise open refinement $W = \{W_\alpha \mid \alpha \in J\}$ of U that covers X. (“precise” means that U and W have the same index set J and $W_\alpha \subset U_\alpha, \forall \alpha \in J$.)

Proof Since X is paracompact, there exists a locally finite open refinement $V = \{V_\beta \mid \beta \in K\}$ of U. For each $\beta \in K$, there exists $\alpha \in J$ such that V_β is contained in U_α. Define

$$\varphi : K \to J \text{ as } \alpha = \varphi(\beta).$$

Also let

$$W_\alpha := \bigcup \{V_\beta \mid \alpha = \varphi(\beta)\}.$$

Then $W_\alpha \subset U_\alpha$ and $W := \{W_\alpha \mid \alpha \in J\}$ is locally finite since V is locally finite. \square

Proposition 5 If a topological space X is paracompact Hausdorff, X is normal.

Proof

Step 1 : X is regular. Let A be a closed subset of X and x be any point which is not in A. Since X is a Hausdorff space, $x \in A^c$ and $a \in A$ can be separated by two disjoint open sets U_a and U_x so that $x \notin U_a$. Define

$$\mathcal{U} = \{U_a \mid a \in A\}.$$

Then \mathcal{U} is an open covering of A. Thus

$$\mathcal{U} \cup \{A^c\}$$

is an open covering of X. There exists a precise locally finite open refinement $\mathcal{V} \cup \{G\}$ of $\mathcal{U} \cup \{A^c\}$ that covers X, where

$$\mathcal{V} = \{V_a \mid a \in A\} \text{ and } G \subset A^c.$$
Let V be the union of all the elements in \mathcal{V}. Now A is contained in V and thus in \overline{V}. Recall that $\mathcal{V} = \bigcup \{ V_a \mid a \in A \}$ since \mathcal{V} is locally finite. Since each V_a is in \overline{U}_a,

$$A \subset V \subset \mathcal{V} \subset \bigcup U_a.$$

So \overline{V} is disjoint from x, namely we can separate x and A using V and \overline{V}.

Step 2 : X is normal. Suppose A and B are two disjoint closed sets in X. Since X is regular, a point a of A and B can be separated by two open sets. Paracompactness of X enables us to construct a locally finite open covering of A which is disjoint from B. Repeat exactly the same procedure in *Step 1* to obtain two disjoint open neighborhoods of A and B.

Proposition 6 (Shrinking lemma) Suppose X is paracompact Hausdorff; Then for any collection $\mathcal{U} = \{ U_\alpha \mid \alpha \in J \}$ of open subsets of X which covers X, there exists a locally finite precise open refinement $\mathcal{V} = \{ V_\alpha \mid \alpha \in J \}$ which covers X such that $V_\alpha \subset \overline{V}_\alpha \subset U_\alpha$ for each $\alpha \in J$.

Proof

For each x there exists U_α containing x and an open neighborhood O_x of x such that

$$x \in O_x \subset \overline{O}_x \subset U_\alpha.$$

Let

$$\varphi : X \to J \quad \text{as} \quad \alpha = \varphi(x).$$

Using Proposition 4, we can construct a precise locally finite open refinement $\mathcal{W} = \{ W_x \mid x \in X \}$ of $\{ O_x \mid x \in X \}$ which covers X. Let

$$V_\alpha = \bigcup \{ W_x \mid \varphi(x) = \alpha \}$$

for each $\alpha \in J$. Note that

$$W_x \subset O_x \subset \overline{O}_x \subset U_\alpha.$$

Thus $V_\alpha \subset U_\alpha$. Now $\mathcal{V} = \{ V_\alpha \mid \alpha \in J \}$ is a locally finite precise open refinement of \mathcal{U} which covers X and

$$\overline{V}_\alpha = \bigcup_{\alpha = \varphi(x)} W_x \subset \bigcup_{\alpha = \varphi(x)} \overline{O}_x \subset U_\alpha.$$

\square
Definition 4 Let $\mathcal{U} = \{U_\alpha \mid \alpha \in J\}$ be an open covering of X. An indexed family of continuous functions

$$ \phi_\alpha : X \to [0, 1] $$

is said to be a **partition of unity** on X subordinate to $\{U_\alpha\}$ if

1. $\text{support}\phi_\alpha$ is contained in U_α.
2. $\{\text{support}\phi_\alpha \mid \alpha \in J\}$ is locally finite.
3. $\Sigma_\alpha \phi_\alpha(x) = 1$ for each x.

Remark support f is the closure of $\{x \in X \mid f(x) \neq 0\}$

Theorem 7 (Existence of partition of unity) If X is a paracompact Hausdorff space, any open covering $\mathcal{U} = \{U_\alpha \mid \alpha \in J\}$ has a partition of unity $\{f_\alpha\}$ subordinate to \mathcal{U}.

Proof Shrink \mathcal{U} to get a precise locally finite open refinement $\mathcal{V} = \{V_\alpha\}$ that covers X. Shrink \mathcal{V} once more to get $\mathcal{W} = \{W_\alpha\}$ using the shrinking lemma. Thus $W_\alpha \subset V_\alpha \subset \overline{V_\alpha} \subset U_\alpha$ for each $\alpha \in J$.

By Urysohn’s lemma, there exists $g_\alpha : X \to [0, 1]$ such that $g_\alpha(\overline{W_\alpha}) = \{1\}$ and $g_\alpha(V_\alpha^c) = \{0\}$. If $W_\alpha = \emptyset$, $g_\alpha \equiv 0$. Since $\text{support} \ g_\alpha \subset \overline{V_\alpha} \subset U_\alpha$, $\{\text{support} \ g_\alpha \mid \alpha \in J\}$ is locally finite. Thus $\Sigma_\alpha g_\alpha$ is a well-defined continuous function such that $\Sigma_\alpha g_\alpha \geq 1$ since $\mathcal{W} = \{W_\alpha\}$ is a covering and $g_\alpha(\overline{W_\alpha}) = 1$.

Define

$$ f_\alpha := \frac{g_\alpha}{\Sigma g_\alpha} $$

then

$$ \text{support} \ f_\alpha = \text{support} \ g_\alpha \text{ and } \Sigma f_\alpha \equiv 1. $$

Remark 1. A product of paracompact spaces need not to be paracompact. (\mathbb{R}^J)

Also a subspace of paracompact space need not to be paracompact, but a closed subspace is paracompact obviously.

2. See Munkres for Stone’s theorem and Smirnov metrization theorem.

Homework Show that the product of paracompact space and a compact space is paracompact.